Schwartz Lab Articles

Cooler, S. Schwartz, G. W. (2021). An offset ON–OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nature Neuroscience 24, 105–115 [PDF]

Jacoby, J., Nath, A., Jessen, Z. F., & Schwartz, G. W. (2018). A self-regulating gap junction network of amacrine cells controls nitric oxide release in the retinaNeuron100(5), 1149-1162. [PDF]

Nath, A., & Schwartz, G. W. (2017). Electrical synapses convey orientation selectivity in the mouse retinaNature communications8(1), 2025. [PDF]

Mani, A., & Schwartz, G. W. (2017). Circuit mechanisms of a retinal ganglion cell with stimulus-dependent response latency and activation beyond its dendrites. Current Biology27(4), 471-482. [PDF]

Jacoby, J., & Schwartz, G. W. (2017). Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motionJournal of Neuroscience37(3), 610-625. [PDF]

Nath, A., & Schwartz, G. W. (2016). Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retinaJournal of Neuroscience36(11), 3208-3221. [PDF]

Jacoby, J., Zhu, Y., DeVries, S. H., & Schwartz, G. W. (2015). An amacrine cell circuit for signaling steady illumination in the retinaCell reports13(12), 2663-2670. [PDF]


Levine JN, Schwartz GW (2020). The Olivary Pretectal Nucleus Receives Visual Input of High Spatial Resolution. bioRxiv:2020.06.23.168054. [link]

Jillian Goetz, Zachary F. Jessen, Anne Jacobi, Adam Mani, Sam Cooler, Devon Greer, Sabah Kadri, Jeremy Segal, Karthik Shekhar, Joshua Sanes, Gregory W. Schwartz (2021). Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. bioRxiv 2021.06.10.447922 [link]


Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC (2020). Identification of Retinal Ganglion Cell Types and Brain Nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. Journal of Comparative Neurology. 1-28  [link]

Kwan CC, Lee HE, Schwartz G, Fawzi AA. (2020). Acute Hyperglycemia Reverses Neurovascular Coupling During Dark to Light Adaptation in Healthy Subjects on Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. Apr 9;61(4):38. [link]

Zhang YS, Lee HE, Kwan CC, Schwartz GW, Fawzi AA. (2020). Caffeine Delays Retinal Neurovascular Coupling during Dark to Light Adaptation in Healthy Eyes Revealed by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. Apr 9;61(4):37. [link]

Laboissonniere LA, Goetz JJ, Martin GM, Bi R, Lund TJS, Ellson L, Lynch MR, Mooney B, Wickham H, Liu P, Schwartz GW, Trimarchi JM. (2019). Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci Rep. Oct 31;9(1):15778. [link]

Nesper PL, Lee HE, Fayed AE, Schwartz GW, Yu F, Fawzi AA. (2019). Hemodynamic Response of the Three Macular Capillary Plexuses in Dark Adaptation and Flicker Stimulation Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. Feb 1;60(2):694-703. 9. [link]

Reviews and viewpoints

Jacoby, J., & Schwartz, G. W. (2018). Typology and circuitry of Suppressed-by-Contrast retinal ganglion cellsFrontiers in cellular neuroscience12[PDF]

Wienbar, S., & Schwartz, G. (2018). The dynamic receptive fields of retinal ganglion cellsProgress in retinal and eye research[PDF]

Schwartz, G., & Rieke, F. (2011). Nonlinear spatial encoding by retinal ganglion cells: when 1+ 1≠ 2. The Journal of general physiology138(3), 283-290. [PDF]

Cafaro, J., Schwartz, G. W., & Grimes, W. N. (2011). An expanding view of dynamic electrical coupling in the mammalian retina. The Journal of physiology589(9), 2115-2116. [PDF]

Berry, M. J., & Schwartz, G. (2011). The retina as embodying predictions about the visual world. Predictions in the Brain: Using Our Past to Generate a Future, 295.

Gregory Schwartz Articles

Turner, M. H., Schwartz, G. W., & Rieke, F. (2018). Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retinaeLife7, e38841. [PDF]

Kuo, S. P., Schwartz, G. W., & Rieke, F. (2016). Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron90(2), 320-332. [PDF]

Grimes, W. N.*, Schwartz, G. W.*, & Rieke, F. (2014). The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina. Neuron82(2), 460-473. [PDF]

Okawa, H., Della Santina, L., Schwartz, G. W., Rieke, F., & Wong, R. O. (2014). Interplay of cell-autonomous and nonautonomous mechanisms tailors synaptic connectivity of converging axons in vivoNeuron82(1), 125-137. [PDF]

Bleckert, A., Schwartz, G. W., Turner, M. H., Rieke, F., & Wong, R. O. (2014). Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell typesCurrent Biology24(3), 310-315. [PDF]

Schwartz, G. W., & Rieke, F. (2013). Controlling gain one photon at a timeElife2, e00467. [PDF]

Chen, E. Y., Marre, O., Fisher, C., Schwartz, G., Levy, J., da Silveira, R. A., & Berry, M. J. (2013). Alert response to motion onset in the retina. Journal of Neuroscience33(1), 120-132. [PDF]

Schwartz, G. W., Okawa, H., Dunn, F. A., Morgan, J. L., Kerschensteiner, D., Wong, R. O., & Rieke, F. (2012). The spatial structure of a nonlinear receptive field. Nature neuroscience15(11), 1572. [PDF][Supp]
(Faculty of 1000 recommendation by Brent Doiron)

Schwartz, G.*, Macke, J.*, Amodei, D., Tang, H., & Berry, M. J. (2012). Low error discrimination using a correlated population codeJournal of neurophysiology108(4), 1069-1088. [PDF]

Soo, F. S., Schwartz, G. W., Sadeghi, K., & Berry, M. J. (2011). Fine spatial information represented in a population of retinal ganglion cells. Journal of Neuroscience31(6), 2145-2155. [PDF]

Gao, J., Schwartz, G., Berry, M. J., & Holmes, P. (2009). An oscillatory circuit underlying the detection of disruptions in temporally-periodic patterns. Network: Computation in Neural Systems20(2), 106-135. [PDF]

Schwartz, G., & Berry 2nd, M. J. (2008). Sophisticated temporal pattern recognition in retinal ganglion cellsJournal of neurophysiology99(4), 1787-1798. [PDF]

Schwartz, G., Taylor, S., Fisher, C., Harris, R., & Berry II, M. J. (2007). Synchronized firing among retinal ganglion cells signals motion reversal. Neuron55(6), 958-969. [PDF]
(Faculty of 1000 recommendation by Leonard Maler)

Schwartz, G., Harris, R., Shrom, D., & Berry II, M. J. (2007). Detection and prediction of periodic patterns by the retina. Nature neuroscience10(5), 552. [PDF]
(Faculty of 1000 recommendation by Bruce Cumming)

Schwartz, G., Howard, M. W., Jing, B., & Kahana, M. J. (2005). Shadows of the past: Temporal retrieval effects in recognition memory. Psychological Science16(11), 898-904. [PDF]

* equal contribution